L∞-stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios
نویسندگان
چکیده
This work is devoted to the design of multi-dimensional finite volume schemes for solving transport equations on unstructured grids. In the framework of MUSCL vertex-based methods we construct numerical fluxes such that the local maximum property is guaranteed under an explicit Courant-Friedrichs-Levy condition. The method can be naturally completed by adaptive local mesh refinements and it turns out that the mesh generation is less constrained than when using the competitive cell-centered methods. We illustrate the effectiveness of the scheme by simulating variable density incompressible viscous flows. Numerical simulations underline the theoretical predictions and succeed in the computation of high density ratio phenomena such as a water bubble falling in air.
منابع مشابه
Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملStability analysis of the cell centered finite-volume Muscl method on unstructured grids
The goal of this study is to apply the MUSCL scheme to the linear advection equation on general unstructured grids and to examine the eigenvalue stability of the resulting linear semi-discrete equation. Although this semi-discrete scheme is in general stable on cartesian grids, numerical calculations of spectra show that this can sometimes fail for generalizations of the MUSCL method to unstruc...
متن کاملA fully coupled fluid-particle flow solver using quadrature-based moment method with high-order realizable schemes on unstructured grids
Kinetic Equations containing terms for spatial transport, gravity, fluid drag and particle-particle collisions can be used to model dilute gas-particle flows. However, the enormity of independent variables makes direct numerical simulation of these equations almost impossible for practical problems. A viable alternative is to reformulate the problem in terms of moments of the velocity distribut...
متن کاملAn efficient unstructured MUSCL scheme for solving the 2D shallow water equations
The aim of this paper is to present a novel monotone upstream scheme for conservation law (MUSCL) on unstructured grids. The novel edge-based MUSCL scheme is devised to construct the required values at the midpoint of cell edges in a more straightforward and effective way compared to other conventional approaches, by making better use of the geometrical property of the triangular grids. The sch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 229 شماره
صفحات -
تاریخ انتشار 2010